Particle swarm optimization for linear support vector machines based classifier selection
نویسندگان
چکیده
Particle swarm optimization is a metaheuristic technique widely applied to solve various optimization problems as well as parameter selection problems for various classification techniques. This paper presents an approach for linear support vector machines classifier optimization combining its selection from a family of similar classifiers with parameter optimization. Experimental results indicate that proposed heuristics can help obtain competitive or even better results compared to similar techniques and approaches and can be used as a solver for various classification tasks.
منابع مشابه
Principal Direction Linear Oracle for Gene Expression Ensemble Classification
A principal direction linear oracle (PDLO) ensemble classifier for DNA microarray gene expression data is proposed. The common fusion-selection ensemble based on weighted trust for a specifier classifier was replaced with pairs of subclassifiers of the same type using PDLO to perform a linear hyperplane split of training and testing samples. The hyperplane split forming the oracle was based on ...
متن کاملIntrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-k...
متن کاملClassification of Clustered Microcalcifications in Mammograms using Particle Swarm Optimization and Least-Squares Support Vector Machine
Feature selection and classifier hyper-parameter optimization are important stages of any computer-aided diagnosis (CADx) system for mammography. The optimal selection for shape features, kernel parameter, and classifier regularization constant is crucial to achieve a good generalization and performance of least-squares support vector machines (LSSVMs). This paper presents a morphology-based CA...
متن کاملSelection of Support Vector Machines based classifiers for credit risk domain
This paper describes an approach for credit risk evaluation based on linear Support Vector Machines classifiers, combined with external evaluation and sliding window testing, with focus on application on larger datasets. It presents a technique for optimal linear SVM classifier selection based on particle swarm optimization technique, providing significant amount of focus on imbalanced learning...
متن کاملClassification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to impro...
متن کامل